Uncertainty Analysis of Interpolation Methods in Rainfall Spatial Distribution–A Case of Small Catchment in Lyon
نویسندگان
چکیده
Quantification of spatial and temporal patterns of rainfall is an important step toward developing regional water sewage models, the intensity and spatial distribution of rainfall can affect the magnitude and duration of water sewage. However, this input is subject to uncertainty, mainly as a result of the interpolation method and stochastic error due to the random nature of rainfall. In this study, we analyze some rainfall series from 30 rain gauges located in the Great Lyon area, including annual, month, day and intensity of 6mins, aiming at improving the understanding of the major sources of variation and uncertainty in small scale rainfall interpolation in different input series. The main results show the model and the parameter of Kriging should be different for the different rainfall series, even if in the same research area. To the small region with high density of rain gauges (15km), the Kriging method superiority is not obvious, IDW and the spline interpolation result maybe can be better. The different methods will be suitable for the different research series, and it must be determined by the data series distribution.
منابع مشابه
تأثیر تغییرات مکانی بارندگی بر پیشبینی هیدروگراف سیلاب در حوضههای آبریز کوهستانی
In this study, the influence of spatial heterogeneity of rainfall on flood hydrograph prediction in three mountainous catchments in south west of Iran was studied. Two interpolation techniques including Thiessen polygons method and Inverse Distance Weighting method were applied to compare the rainfall patterns of surrounding rain-gages in hydrograph simulation with rainfall patterns of nearest ...
متن کاملThe Effect of Station Density and Regional Division on Spatial Distribution of Daily Rainfall
Rainfall is one of the most important climatic variables in the hydrology cycle. In flood estimation as well as environmental pollution studies in medium to large watersheds not only mus temporal pattern of rainfall t be known, but also the knowledge of its spatial distribution is required. Estimation of daily rainfall distribution without comparison and selection of suitable methods may lead...
متن کاملThe Effect of Station Density and Regional Division on Spatial Distribution of Daily Rainfall
Rainfall is one of the most important climatic variables in the hydrology cycle. In flood estimation as well as environmental pollution studies in medium to large watersheds not only mus temporal pattern of rainfall t be known, but also the knowledge of its spatial distribution is required. Estimation of daily rainfall distribution without comparison and selection of 
suitable methods may le...
متن کاملSpatial Interpolation Using Copula for non-Gaussian Modeling of Rainfall Data
‎One of the most useful tools for handling multivariate distributions of dependent variables in terms of their marginal distribution is a copula function‎. ‎The copula families capture a fair amount of attention due to their applicability and flexibility in describing the non-Gaussian spatial dependent data‎. ‎The particular properties of the spatial copula are rarely ...
متن کاملModeling spatial distribution of Tehran air pollutants using geostatistical methods incorporate uncertainty maps
The estimation of pollution fields, especially in densely populated areas, is an important application in the field of environmental science due to the significant effects of air pollution on public health. In this paper, we investigate the spatial distribution of three air pollutants in Tehran’s atmosphere: carbon monoxide (CO), nitrogen dioxide (NO2), and atmospheric particulate matters less ...
متن کامل